M1.C

M2.(a) force between two (point) charges is
proportional to product of charges
inversely proportional to square of distance between the charges
Mention of force is essential, otherwise no marks.
Condone "proportional to charges".
Do not allow "square of radius" when radius is undefined.
Award full credit for equation with all terms defined.
(b) $\quad V$ is inversely proportional to $r[$ or $V \propto(-) 1 / r] \checkmark$ (V has negative values) because charge is negative
[or because force is attractive on + charge placed near it or because electric potential is + for + charge and - for - charge] \checkmark potential is defined to be zero at infinity

Allow $V \times r=$ constant for $1^{\text {st }}$ mark.
(c) (i) $Q\left(=4 \pi \varepsilon_{0} r V\right)=4 \pi \varepsilon_{0} \times 0.125 \times 2000$

OR gradient $=Q / 4 \pi \varepsilon_{0}=2000 / 8$
(for example, using any pair of values from graph)
$=28(27.8)(\pm 1)(n C)$
(gives $Q=28(27.8) \pm 1(n C)$
(ii) at $r=0.20 \mathrm{~m} V=-1250 \mathrm{~V}$ and at $r=0.50 \mathrm{~m} V=-500 \mathrm{~V}$
so pd $\Delta V=-500-(-1250)=750(\mathrm{~V}) \quad \checkmark$
work done $\Delta W(=Q \Delta V)=60 \times 10^{-9} \times 750$

$$
=4.5(0) \times 10^{-5}(\mathrm{~J})(45 \mu \mathrm{~J}) \checkmark
$$

(final answer could be between 3.9 and 5.1×10^{-5})
Allow tolerance of $\pm 50 \mathrm{~V}$ on graph readings.
[Alternative for $1^{\text {st }}$ mark:
$\Delta V=\frac{27.8 \times 10^{-9}}{4 \pi \varepsilon_{0}} \times\left(\frac{1}{0.2}-\frac{1}{0.5}\right)$ (or similar substitution using 60
$n C$
instead of 27.8 nC:
use of $60 n C$ gives $\Delta V=1620 \mathrm{~V}$)]
(iii)

$$
\begin{aligned}
& E\left(=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}\right)=\frac{27.8 \times 10^{-9}}{4 \pi \varepsilon_{0} \times 0.40^{2}} \quad \checkmark=1600(1560)\left(\mathrm{V} \mathrm{~m}^{-1}\right) \checkmark \\
& \text { [or deduce } E=\frac{V}{r} \text { by combining } E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \quad \text { with } V=\frac{Q}{4 \pi \varepsilon_{0} r} \\
& \quad \text { from graph } E=\frac{625 \pm 50}{0.40}=1600(1560 \pm 130)\left(\mathrm{V} \mathrm{~m}^{-1}\right) \checkmark \text {] } \\
& \quad \text { Use of } Q=30 n C \text { gives } 1690\left(\mathrm{~V} \mathrm{~m}^{-1}\right) . \\
& \text { Allow ecf from } Q \text { value in (i). } \\
& \text { If } Q=60 n C \text { is used here, no marks to be awarded. }
\end{aligned}
$$

or (mass $\mathrm{Be}-7$) - (mass $\mathrm{He}-3$) - (mass $\mathrm{He}-4$) seen with numbers
C1
$2.84 \times 10^{-30}(\mathrm{~kg})$
or Converts their mass to kg
Alternative 2nd mark:
Allow conversion of 1.71×10^{-3} (u) to MeV by multiplying by $931(=1.59(\mathrm{MeV}))$ seen

C1
Substitution in $\mathrm{E}=\mathrm{mc}^{2} \quad$ condone their mass difference in this sub but must have correct value for c^{2} $\left(3 \times 10^{8}\right)^{2}$ or 9×10^{16}

Alternative 3rd mark:
Allow their MeV converted to joules $\left(\times 1.6 \times 10^{-13}\right)$ seen
$2.55 \times 10^{-13}(\mathrm{~J})$ to $2.6 \times 10^{-13}(\mathrm{~J})$
Alternative 4th mark:

Allow $2.5 \times 10^{-13}(\mathrm{~J})$ for this method
(ii) Use of $E=h c / \lambda$ ecf

C1
Correct substitution in rearranged equation with λ subject ecf

C1
$7.65 \times 10^{-13}(\mathrm{~m})$ to $7.8 \times 10^{-13}(\mathrm{~m}) \quad$ ecf
(b) (i) Use of E_{p} formula:

Correct charges for the nuclei and correct powers of 10
$2.6(3) \times 10^{-13} \mathrm{~J}$
(ii) Uses $K E=3 / 2 \mathrm{kT}$: or halves $K E_{T}, K E=1.3 \times 10^{-13}(\mathrm{~J})$ seen ecf

Correct substitution of data and makes T subject ecf Or uses $K E_{T}$ value and divides T by 2
$6.35 \times 10^{9}(\mathrm{~K})$ or $6.4 \times 10^{9}(\mathrm{~K})$ or $6.28 \times 10^{9}(\mathrm{~K})$ or $6.3 \times$ $10^{9}(\mathrm{~K})$ ecf
(c) (i) Deuteron / deuterium / hydrogen-2

Triton / tritium / hydrogen-3
(ii) Electrical heating / electrical discharge / inducing a current in plasma / use of e-m radiation / using radio waves (causing charged particles to resonate)

M4.C

M5.D

M6.A

M7.B

M8.D

M9.D

M10.B

M11.C

M12. (a) work done [or energy needed] per unit charge[or (change in) electric pe per unit charge] \checkmark
on [or of] a (small) positive (test) charge \checkmark
in moving the charge from infinity (to the point)
[not from the point to infinity]
(b) (i) $V=\frac{Q}{4 \pi \varepsilon_{0} r}$ gives $Q\left(=4 \pi \varepsilon_{0} r V\right)=4 \pi \times 8.85 \times 10^{-12} \times 0.30 \times 3.0 \quad \checkmark$
$=1.0 \times 10^{-10}(\mathrm{C})$
to 2 sf only
(ii) use of $\mathrm{V}_{\infty} \frac{1}{r}$ gives $\mathrm{V}_{\mathrm{M}}=\frac{V_{L}}{3} \checkmark(=(+) 1.0 \mathrm{~V})$
(iii) $E\left(=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}\right)=\frac{1.0 \times 10^{-10}}{4 \pi \times 8.85 \times 10^{-12} \times 0.60^{2}} \checkmark\left(=2.50 \mathrm{~V} \mathrm{~m}^{-1}\right)$
(c) (i) uniformly spaced vertical parallel lines which start and end on plates \checkmark relevant lines with arrow(s) pointing only downwards
(ii) $=3.3(3)\left(\mathrm{V} \mathrm{m}^{-1}\right) \checkmark$
(iii) part (b) is a radial field whilst part (c) is a uniform field \checkmark [or field lines become further apart between \mathbf{L} and \mathbf{M} but are equally spaced between \mathbf{R} and \mathbf{S}]

1
[12]

